
Introduzione alla OOP (Object Oriented Programming)

È una nuova metodologia per lo sviluppo di applicazioni software

La principale innovazione di questa metodologia sta nel superamento
della tradizionale separazione tra dati e codice

Questa metodologia si basa sulla descrizione delle caratteristiche
intrinseche, dello Stato e del comportamento di un determinato oggetto
Questi parametri servono per definire il modello dell'oggetto che
stiamo descrivendo

Per definire un modello dobbiamo acquisire due abilità:
Saper effettuare una astrazione sulle caratteristiche traducendole
in dati (attributi)
Saper effettuare una astrazione di tipo funzionale per individuare
le azioni da compiere (operazioni)

Queste due abilità ci permetteranno di:
progettare un oggetto (Object Oriented Design: OOD)
programmare un oggetto (Object Oriented Programming: OOP)

Una delle peculiarità della OOP e la possibilità di definire nuovi tipi
di dati; quando noi pensiamo ai tipi di dati, istintivamente pensiamo
ai valori che un particolare tipo di dato può assumere e alle operazioni
che possiamo fare con quel dato; esempi:

Con i numeri reali alle operazioni di somma, sottrazione, divisione e moltiplicazione...
ma anche al calcolo della parte intera i simboli che usiamo sono le cifre arabe

Con i numeri interi oltre alle operazioni aritmetiche, abbiamo l' operazione di modulo,
che non è prevista i numeri reali (cifre arabe)

Con le stringhe pensiamo alle operazioni di concatenamento, estrazione di
un singolo carattere o di sottostringa oppure il conteggio del numero dei caratteri
o delle occorrenze di una sequenza (caratteri)

Questi esempi ci fanno capire che quando progettiamo un tipo di dato
dobbiamo anche prevedere le operazioni che possiamo fare con esso

Un tipo di dato è definito quando riusciamo ad individuare un insieme
di valori ammissibili e un insieme di operazioni che possono essere
applicate a quel tipo di dato.

Generalizzazione

Consideriamo il tipo data e ci poniamo le seguenti domande:
Ha senso fare la somma di due date? No
Ha senso fare la differenza fra due date? La risposta è sì e il risultato è il numero di giorni
che intercorrono fra le due date
Ha senso sottrarre da una data un intero? La risposta è sì e il risultato è una data anteriore a
quella iniziale
Ha senso aggiungere ad una data un numero intero la risposta è ancora Sì è il risultato è una data
posteriore a quella iniziale
Le operazioni di moltiplicazione e di divisione per esempio fra le date non hanno senso.
Altre operazioni che hanno senso con una data sono l'estrazione del giorno dalla data, l'estrazione
del mese oppure l'estrazione dell'anno

Definizione

Un tipo di dato astratto (ADT Abstract Data Type) è ben specificato
se per esso sono definiti:

I dati (attributi)
Le operazioni che si possono effettuare su quel dato (metodi)

Nella programmazione OOP per interagire con i dati, si usano
esclusivamente i metodi previsti dal progettista dell'oggetto e
esposti al programmatore

Una caratteristica fondamentale della OOP é il principio di
Information Hiding (nascondere le informazioni) detto anche
incapsulamento che stabilisce la netta separazione fra la
struttura interna di un oggetto e la sua interfaccia che saranno
definiti in fase di progettazione

Questa metodologia offre diversi vantaggi:
un ADT ben progettato può essere riutilizzato come componente
in più progetti
una eventuale modifica da parte del progettista alla struttura
interna dell'ADT rimane invisibile al programmatore
poiché il programmatore potrà interagire con l'ADT solo attraverso
i metodi esposti, sarà garantita la integrità della struttura interna

Ricapitolando possiamo dire che un progettista deve:
definire gli attributi e i metodi di un ADT
decidere quali attributi e quali metodi devono essere resi pubblici
(cioè messi a disposizione di un eventuale utilizzatore dell'ADT)
e quali invece devono rimanere privati, cioè invisibili ad utilizzatore

